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COSY infinity

COSY Environment is Fortran-77 core providing a collection of Differential algebras types and
advanced scripting language (FOX).

DA capabilities: Normal form transformations; Tune and resonance strength calculations with NF;
Beam matching

FOX addons:

e cosy beam dynamics (contains various types of magnetic and electric elements)
e FMM - 3D Fast Multipole Method (N-body problem and applications for particle accelerator)

e COMFY - space charge effects

e PISCS -electrostatic interactions within a charged particle distribution




Canonical variables in S-Hamiltonian

Longitudinal time-of-flight and energy/momenta deviation variables:

MADX MADS : SIXTRACK : COSY :
As=s5—Bct CAt=5s/po— ct 0=5—Poct
P— P, E—-E E - E
5 = = s =
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Re-scaled momenta and vector potential:
px=Px/PO py=Py/PO ps=Ps/P0
ax = qAx/ Py ay = qA,/Po as = qAs/Po

Horizontal and vertical positions: x, y
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COSY: equation of motion

Equation of motion in COSY variables (E = 0,and straight reference orbit):
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Field representation in COSY

In charge/current free regions filed can be represented with scalar potentials Vg and Vg

E=VVe B=VVg (8)
AVe =0 AVg=0 (9)

In general V has a form:

The goal is to find a;; x to describe the field.




Plane symmetric field [
o

V(x,y.9) = DD Acle) (11)

For the case of plane symmetric field to restore the information about the entire field. By compo-
nent at the midplane is only needed. B, (x, y = 0, s) (proved by M. Berz Modern map methods in
particle beam physics. Advances in Imaging and Electron Physics, 108:1-318, 1999.)




|OTA nonlinear magnet

Bx component By component

By component at Mid plane (y=0)
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By at mid. plane (where X, = x/(csqrtf))
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Fringe field

In COSY fringe field is approximated by Enge functions:

B(x,y,s) = F(s)B(x, ¥, so) (13)

where:

F(s) 1

(14)

1+ exp(a + ai(s/D) + ... + as(s/D)®)
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Bx, By components for IOTA nonlinear magnet compared with ANSYS simulations (ANSYS data
provided by F. O’'Shea (RadiaBeam). 3D Cartesian grid, distance from the axis: x=1mm, y=1mm




Potential problem
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The same data set, but distance to the origin is x,y=3.6 mm.
16.
To make a better fit to the real field we need higher order.

Left - truncation order is 10; Right -




|OTA lattice

We used IOTA version with 2 non-linear elements. The lattice was converted to COSY format.

Linear optics is the same in MAD/PTC and COSY, but due to the problem with truncation order
described above results seems not relevant.

IOTA studies work in progress...




Local integrability in COSY

Q __o726E.02

y, mm

0726602

AL LA N

0.726E 02




Backup slides: PISCS

PISCS module was created by by Anthony Gee.

The Poisson Integral Solver with Curved Surfaces (PISCS) is a package written in COSY Script
for MSU COSY Infinity v9.2. PISCS is a 3-D Poisson boundary value problem solver accelerated
by the fast multipole method (FMM). In this case, the Poisson BVP represents the electrostatic
interactions within a charged particle distribution as a supplement to beam physics computations.




Backup slides: PISCS
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